Enhanced stem cell pluripotency in surface-modified electrospun fibrous matrices.

نویسندگان

  • Michael R Zonca
  • Philip S Yune
  • James K Williams
  • Minghao Gu
  • Andrea M Unser
  • Joseph Imbrogno
  • Georges Belfort
  • Yubing Xie
چکیده

A previously screened "hit chemistry" (N-[3-(dimethylamino)propyl] methacrylamide) that supports strong attachment and long-term self-renewal of ES cells is selected and grafted to poly(ether sulfone) (PES) fibrous matrices through plasma-induced graft polymerization. The 3D modified fibers exhibit higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D membranes. It is the first demonstration of scaling up an optimal synthetic surface chemistry in 2D using a high throughput synthesis, screening, and selection method to 3D that strongly influences pluripotent stem cell growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration

A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distr...

متن کامل

Intrinsically water-stable electrospun threedimensionalultrafine fibrous soy protein scaffoldsfor soft tissue engineering using adipose derivedmesenchymal stem cells

Intrinsically water-stable electrospun threedimensional ultrafine fibrous soy protein scaffolds for soft tissue engineering using adipose derived mesenchymal stem cells" (2014). Faculty Publications-Textiles, Merchandising and Fashion Design. Paper 35. Soy protein, the plant protein from soybean, was electrospun into intrinsically water-stable scaffolds with large volume and ultrafine fibers or...

متن کامل

Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.

Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem c...

متن کامل

The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent...

متن کامل

Hierarchically engineered fibrous scaffolds for bone regeneration.

Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopographic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchically engineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2014